/* ** Copyright 2005 Huxtable.com. All rights reserved. */ package filter; import java.awt.*; import java.awt.image.*; import java.awt.geom.*; /** * A filter which applies a convolution kernel to an image. * @author Jerry Huxtable */ public class ConvolveFilter extends AbstractBufferedImageOp { static final long serialVersionUID = 2239251672685254626L; public static int ZERO_EDGES = 0; public static int CLAMP_EDGES = 1; public static int WRAP_EDGES = 2; protected Kernel kernel = null; public boolean alpha = true; private int edgeAction = CLAMP_EDGES; /** * Construct a filter with a null kernel. This is only useful if you're going to change the kernel later on. */ public ConvolveFilter() { this(new float[9]); } /** * Construct a filter with the given 3x3 kernel. * @param matrix an array of 9 floats containing the kernel */ public ConvolveFilter(float[] matrix) { this(new Kernel(3, 3, matrix)); } /** * Construct a filter with the given kernel. * @param rows the number of rows in the kernel * @param cols the number of columns in the kernel * @param matrix an array of rows*cols floats containing the kernel */ public ConvolveFilter(int rows, int cols, float[] matrix) { this(new Kernel(cols, rows, matrix)); } /** * Construct a filter with the given 3x3 kernel. * @param matrix an array of 9 floats containing the kernel */ public ConvolveFilter(Kernel kernel) { this.kernel = kernel; } public void setKernel(Kernel kernel) { this.kernel = kernel; } public Kernel getKernel() { return kernel; } public void setEdgeAction(int edgeAction) { this.edgeAction = edgeAction; } public int getEdgeAction() { return edgeAction; } public BufferedImage filter( BufferedImage src, BufferedImage dst ) { int width = src.getWidth(); int height = src.getHeight(); if ( dst == null ) dst = createCompatibleDestImage( src, null ); int[] inPixels = new int[width*height]; int[] outPixels = new int[width*height]; getRGB( src, 0, 0, width, height, inPixels ); convolve(kernel, inPixels, outPixels, width, height, alpha, edgeAction); setRGB( dst, 0, 0, width, height, outPixels ); return dst; } public BufferedImage createCompatibleDestImage(BufferedImage src, ColorModel dstCM) { if ( dstCM == null ) dstCM = src.getColorModel(); return new BufferedImage(dstCM, dstCM.createCompatibleWritableRaster(src.getWidth(), src.getHeight()), dstCM.isAlphaPremultiplied(), null); } public Rectangle2D getBounds2D( BufferedImage src ) { return new Rectangle(0, 0, src.getWidth(), src.getHeight()); } public Point2D getPoint2D( Point2D srcPt, Point2D dstPt ) { if ( dstPt == null ) dstPt = new Point2D.Double(); dstPt.setLocation( srcPt.getX(), srcPt.getY() ); return dstPt; } public RenderingHints getRenderingHints() { return null; } public static void convolve(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, int edgeAction) { convolve(kernel, inPixels, outPixels, width, height, true, edgeAction); } public static void convolve(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, boolean alpha, int edgeAction) { if (kernel.getHeight() == 1) convolveH(kernel, inPixels, outPixels, width, height, alpha, edgeAction); else if (kernel.getWidth() == 1) convolveV(kernel, inPixels, outPixels, width, height, alpha, edgeAction); else convolveHV(kernel, inPixels, outPixels, width, height, alpha, edgeAction); } /** * Convolve with a 2D kernel */ public static void convolveHV(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, boolean alpha, int edgeAction) { int index = 0; float[] matrix = kernel.getKernelData( null ); int rows = kernel.getHeight(); int cols = kernel.getWidth(); int rows2 = rows/2; int cols2 = cols/2; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { float r = 0, g = 0, b = 0, a = 0; for (int row = -rows2; row <= rows2; row++) { int iy = y+row; int ioffset; if (0 <= iy && iy < height) ioffset = iy*width; else if ( edgeAction == CLAMP_EDGES ) ioffset = y*width; else if ( edgeAction == WRAP_EDGES ) ioffset = ((iy+height) % height) * width; else continue; int moffset = cols*(row+rows2)+cols2; for (int col = -cols2; col <= cols2; col++) { float f = matrix[moffset+col]; if (f != 0) { int ix = x+col; if (!(0 <= ix && ix < width)) { if ( edgeAction == CLAMP_EDGES ) ix = x; else if ( edgeAction == WRAP_EDGES ) ix = (x+width) % width; else continue; } int rgb = inPixels[ioffset+ix]; a += f * ((rgb >> 24) & 0xff); r += f * ((rgb >> 16) & 0xff); g += f * ((rgb >> 8) & 0xff); b += f * (rgb & 0xff); } } } int ia = alpha ? PixelUtils.clamp((int)(a+0.5)) : 0xff; int ir = PixelUtils.clamp((int)(r+0.5)); int ig = PixelUtils.clamp((int)(g+0.5)); int ib = PixelUtils.clamp((int)(b+0.5)); outPixels[index++] = (ia << 24) | (ir << 16) | (ig << 8) | ib; } } } /** * Convolve with a kernel consisting of one row */ public static void convolveH(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, boolean alpha, int edgeAction) { int index = 0; float[] matrix = kernel.getKernelData( null ); int cols = kernel.getWidth(); int cols2 = cols/2; for (int y = 0; y < height; y++) { int ioffset = y*width; for (int x = 0; x < width; x++) { float r = 0, g = 0, b = 0, a = 0; int moffset = cols2; for (int col = -cols2; col <= cols2; col++) { float f = matrix[moffset+col]; if (f != 0) { int ix = x+col; if ( ix < 0 ) { if ( edgeAction == CLAMP_EDGES ) ix = 0; else if ( edgeAction == WRAP_EDGES ) ix = (x+width) % width; } else if ( ix >= width) { if ( edgeAction == CLAMP_EDGES ) ix = width-1; else if ( edgeAction == WRAP_EDGES ) ix = (x+width) % width; } int rgb = inPixels[ioffset+ix]; a += f * ((rgb >> 24) & 0xff); r += f * ((rgb >> 16) & 0xff); g += f * ((rgb >> 8) & 0xff); b += f * (rgb & 0xff); } } int ia = alpha ? PixelUtils.clamp((int)(a+0.5)) : 0xff; int ir = PixelUtils.clamp((int)(r+0.5)); int ig = PixelUtils.clamp((int)(g+0.5)); int ib = PixelUtils.clamp((int)(b+0.5)); outPixels[index++] = (ia << 24) | (ir << 16) | (ig << 8) | ib; } } } /** * Convolve with a kernel consisting of one column */ public static void convolveV(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, boolean alpha, int edgeAction) { int index = 0; float[] matrix = kernel.getKernelData( null ); int rows = kernel.getHeight(); int rows2 = rows/2; for (int y = 0; y < height; y++) { for (int x = 0; x < width; x++) { float r = 0, g = 0, b = 0, a = 0; for (int row = -rows2; row <= rows2; row++) { int iy = y+row; int ioffset; if ( iy < 0 ) { if ( edgeAction == CLAMP_EDGES ) ioffset = 0; else if ( edgeAction == WRAP_EDGES ) ioffset = ((y+height) % height)*width; else ioffset = iy*width; } else if ( iy >= height) { if ( edgeAction == CLAMP_EDGES ) ioffset = (height-1)*width; else if ( edgeAction == WRAP_EDGES ) ioffset = ((y+height) % height)*width; else ioffset = iy*width; } else ioffset = iy*width; float f = matrix[row+rows2]; if (f != 0) { int rgb = inPixels[ioffset+x]; a += f * ((rgb >> 24) & 0xff); r += f * ((rgb >> 16) & 0xff); g += f * ((rgb >> 8) & 0xff); b += f * (rgb & 0xff); } } int ia = alpha ? PixelUtils.clamp((int)(a+0.5)) : 0xff; int ir = PixelUtils.clamp((int)(r+0.5)); int ig = PixelUtils.clamp((int)(g+0.5)); int ib = PixelUtils.clamp((int)(b+0.5)); outPixels[index++] = (ia << 24) | (ir << 16) | (ig << 8) | ib; } } } public String toString() { return "Blur/Convolve..."; } }
最近下载更多
mcj2761358 LV1
2022年10月12日
zwhhfhfh123456 LV1
2022年3月4日
gugumall LV1
2021年5月31日
luck86 LV1
2021年4月4日
自律- LV19
2021年3月12日
q57994083 LV1
2020年5月11日
z656017811 LV1
2020年4月24日
OzzieHu LV1
2020年4月19日
wgwyqq LV10
2020年4月8日
983708408 LV2
2019年11月28日
最近浏览更多
1053001914 LV1
2023年12月28日
DongYingdie LV2
2023年12月21日
woldxy LV12
2023年9月27日
不嘻嘻 LV8
2023年5月12日
mcj2761358 LV1
2022年10月12日
zwhhfhfh123456 LV1
2022年3月4日
Yunz
2021年10月27日
暂无贡献等级
ljx321456987
2021年8月10日
暂无贡献等级
gugumall LV1
2021年5月31日
a5366869 LV7
2021年4月7日