首页>代码>java实现的图片高斯模糊代码 >/GaussianTest/src/filter/ConvolveFilter.java
/*
** Copyright 2005 Huxtable.com. All rights reserved.
*/

package filter;

import java.awt.*;
import java.awt.image.*;
import java.awt.geom.*;

/**
 * A filter which applies a convolution kernel to an image.
 * @author Jerry Huxtable
 */
public class ConvolveFilter extends AbstractBufferedImageOp {

	static final long serialVersionUID = 2239251672685254626L;
	
	public static int ZERO_EDGES = 0;
	public static int CLAMP_EDGES = 1;
	public static int WRAP_EDGES = 2;

	protected Kernel kernel = null;
	public boolean alpha = true;
	private int edgeAction = CLAMP_EDGES;

	/**
	 * Construct a filter with a null kernel. This is only useful if you're going to change the kernel later on.
	 */
	public ConvolveFilter() {
		this(new float[9]);
	}

	/**
	 * Construct a filter with the given 3x3 kernel.
	 * @param matrix an array of 9 floats containing the kernel
	 */
	public ConvolveFilter(float[] matrix) {
		this(new Kernel(3, 3, matrix));
	}
	
	/**
	 * Construct a filter with the given kernel.
	 * @param rows	the number of rows in the kernel
	 * @param cols	the number of columns in the kernel
	 * @param matrix	an array of rows*cols floats containing the kernel
	 */
	public ConvolveFilter(int rows, int cols, float[] matrix) {
		this(new Kernel(cols, rows, matrix));
	}
	
	/**
	 * Construct a filter with the given 3x3 kernel.
	 * @param matrix an array of 9 floats containing the kernel
	 */
	public ConvolveFilter(Kernel kernel) {
		this.kernel = kernel;	
	}

	public void setKernel(Kernel kernel) {
		this.kernel = kernel;
	}

	public Kernel getKernel() {
		return kernel;
	}

	public void setEdgeAction(int edgeAction) {
		this.edgeAction = edgeAction;
	}

	public int getEdgeAction() {
		return edgeAction;
	}

    public BufferedImage filter( BufferedImage src, BufferedImage dst ) {
        int width = src.getWidth();
        int height = src.getHeight();

        if ( dst == null )
            dst = createCompatibleDestImage( src, null );

        int[] inPixels = new int[width*height];
        int[] outPixels = new int[width*height];
        getRGB( src, 0, 0, width, height, inPixels );

		convolve(kernel, inPixels, outPixels, width, height, alpha, edgeAction);

        setRGB( dst, 0, 0, width, height, outPixels );
        return dst;
    }

    public BufferedImage createCompatibleDestImage(BufferedImage src, ColorModel dstCM) {
        if ( dstCM == null )
            dstCM = src.getColorModel();
        return new BufferedImage(dstCM, dstCM.createCompatibleWritableRaster(src.getWidth(), src.getHeight()), dstCM.isAlphaPremultiplied(), null);
    }
    
    public Rectangle2D getBounds2D( BufferedImage src ) {
        return new Rectangle(0, 0, src.getWidth(), src.getHeight());
    }
    
    public Point2D getPoint2D( Point2D srcPt, Point2D dstPt ) {
        if ( dstPt == null )
            dstPt = new Point2D.Double();
        dstPt.setLocation( srcPt.getX(), srcPt.getY() );
        return dstPt;
    }

    public RenderingHints getRenderingHints() {
        return null;
    }

	public static void convolve(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, int edgeAction) {
		convolve(kernel, inPixels, outPixels, width, height, true, edgeAction);
	}
	
	public static void convolve(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, boolean alpha, int edgeAction) {
		if (kernel.getHeight() == 1)
			convolveH(kernel, inPixels, outPixels, width, height, alpha, edgeAction);
		else if (kernel.getWidth() == 1)
			convolveV(kernel, inPixels, outPixels, width, height, alpha, edgeAction);
		else
			convolveHV(kernel, inPixels, outPixels, width, height, alpha, edgeAction);
	}
	
	/**
	 * Convolve with a 2D kernel
	 */
	public static void convolveHV(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, boolean alpha, int edgeAction) {
		int index = 0;
		float[] matrix = kernel.getKernelData( null );
		int rows = kernel.getHeight();
		int cols = kernel.getWidth();
		int rows2 = rows/2;
		int cols2 = cols/2;

		for (int y = 0; y < height; y++) {
			for (int x = 0; x < width; x++) {
				float r = 0, g = 0, b = 0, a = 0;

				for (int row = -rows2; row <= rows2; row++) {
					int iy = y+row;
					int ioffset;
					if (0 <= iy && iy < height)
						ioffset = iy*width;
					else if ( edgeAction == CLAMP_EDGES )
						ioffset = y*width;
					else if ( edgeAction == WRAP_EDGES )
						ioffset = ((iy+height) % height) * width;
					else
						continue;
					int moffset = cols*(row+rows2)+cols2;
					for (int col = -cols2; col <= cols2; col++) {
						float f = matrix[moffset+col];

						if (f != 0) {
							int ix = x+col;
							if (!(0 <= ix && ix < width)) {
								if ( edgeAction == CLAMP_EDGES )
									ix = x;
								else if ( edgeAction == WRAP_EDGES )
									ix = (x+width) % width;
								else
									continue;
							}
							int rgb = inPixels[ioffset+ix];
							a += f * ((rgb >> 24) & 0xff);
							r += f * ((rgb >> 16) & 0xff);
							g += f * ((rgb >> 8) & 0xff);
							b += f * (rgb & 0xff);
						}
					}
				}
				int ia = alpha ? PixelUtils.clamp((int)(a+0.5)) : 0xff;
				int ir = PixelUtils.clamp((int)(r+0.5));
				int ig = PixelUtils.clamp((int)(g+0.5));
				int ib = PixelUtils.clamp((int)(b+0.5));
				outPixels[index++] = (ia << 24) | (ir << 16) | (ig << 8) | ib;
			}
		}
	}

	/**
	 * Convolve with a kernel consisting of one row
	 */
	public static void convolveH(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, boolean alpha, int edgeAction) {
		int index = 0;
		float[] matrix = kernel.getKernelData( null );
		int cols = kernel.getWidth();
		int cols2 = cols/2;

		for (int y = 0; y < height; y++) {
			int ioffset = y*width;
			for (int x = 0; x < width; x++) {
				float r = 0, g = 0, b = 0, a = 0;
				int moffset = cols2;
				for (int col = -cols2; col <= cols2; col++) {
					float f = matrix[moffset+col];

					if (f != 0) {
						int ix = x+col;
						if ( ix < 0 ) {
							if ( edgeAction == CLAMP_EDGES )
								ix = 0;
							else if ( edgeAction == WRAP_EDGES )
								ix = (x+width) % width;
						} else if ( ix >= width) {
							if ( edgeAction == CLAMP_EDGES )
								ix = width-1;
							else if ( edgeAction == WRAP_EDGES )
								ix = (x+width) % width;
						}
						int rgb = inPixels[ioffset+ix];
						a += f * ((rgb >> 24) & 0xff);
						r += f * ((rgb >> 16) & 0xff);
						g += f * ((rgb >> 8) & 0xff);
						b += f * (rgb & 0xff);
					}
				}
				int ia = alpha ? PixelUtils.clamp((int)(a+0.5)) : 0xff;
				int ir = PixelUtils.clamp((int)(r+0.5));
				int ig = PixelUtils.clamp((int)(g+0.5));
				int ib = PixelUtils.clamp((int)(b+0.5));
				outPixels[index++] = (ia << 24) | (ir << 16) | (ig << 8) | ib;
			}
		}
	}

	/**
	 * Convolve with a kernel consisting of one column
	 */
	public static void convolveV(Kernel kernel, int[] inPixels, int[] outPixels, int width, int height, boolean alpha, int edgeAction) {
		int index = 0;
		float[] matrix = kernel.getKernelData( null );
		int rows = kernel.getHeight();
		int rows2 = rows/2;

		for (int y = 0; y < height; y++) {
			for (int x = 0; x < width; x++) {
				float r = 0, g = 0, b = 0, a = 0;

				for (int row = -rows2; row <= rows2; row++) {
					int iy = y+row;
					int ioffset;
					if ( iy < 0 ) {
						if ( edgeAction == CLAMP_EDGES )
							ioffset = 0;
						else if ( edgeAction == WRAP_EDGES )
							ioffset = ((y+height) % height)*width;
						else
							ioffset = iy*width;
					} else if ( iy >= height) {
						if ( edgeAction == CLAMP_EDGES )
							ioffset = (height-1)*width;
						else if ( edgeAction == WRAP_EDGES )
							ioffset = ((y+height) % height)*width;
						else
							ioffset = iy*width;
					} else
						ioffset = iy*width;

					float f = matrix[row+rows2];

					if (f != 0) {
						int rgb = inPixels[ioffset+x];
						a += f * ((rgb >> 24) & 0xff);
						r += f * ((rgb >> 16) & 0xff);
						g += f * ((rgb >> 8) & 0xff);
						b += f * (rgb & 0xff);
					}
				}
				int ia = alpha ? PixelUtils.clamp((int)(a+0.5)) : 0xff;
				int ir = PixelUtils.clamp((int)(r+0.5));
				int ig = PixelUtils.clamp((int)(g+0.5));
				int ib = PixelUtils.clamp((int)(b+0.5));
				outPixels[index++] = (ia << 24) | (ir << 16) | (ig << 8) | ib;
			}
		}
	}

	public String toString() {
		return "Blur/Convolve...";
	}
}
最近下载更多
mcj2761358  LV1 2022年10月12日
zwhhfhfh123456  LV1 2022年3月4日
gugumall  LV1 2021年5月31日
luck86  LV1 2021年4月4日
自律-  LV19 2021年3月12日
q57994083  LV1 2020年5月11日
z656017811  LV1 2020年4月24日
OzzieHu  LV1 2020年4月19日
wgwyqq  LV10 2020年4月8日
983708408  LV2 2019年11月28日
最近浏览更多
1053001914  LV1 2023年12月28日
DongYingdie  LV2 2023年12月21日
woldxy  LV12 2023年9月27日
不嘻嘻  LV8 2023年5月12日
mcj2761358  LV1 2022年10月12日
zwhhfhfh123456  LV1 2022年3月4日
Yunz 2021年10月27日
暂无贡献等级
ljx321456987 2021年8月10日
暂无贡献等级
gugumall  LV1 2021年5月31日
a5366869  LV7 2021年4月7日
顶部 客服 微信二维码 底部
>扫描二维码关注最代码为好友扫描二维码关注最代码为好友